Investigation of aromatic amines in municipal wastewaters using Stir MUNI RECETOX **Bar Sorptive Extraction with derivatization**

Adam Březina¹, Marek Stiborek¹, Branislav Vrana¹

¹Masaryk University, Faculty of Science, Centre RECETOX, Czech Republic

email: adam.brezina@recetox.muni.cz

Introduction

Aromatic amines (AAs) are organic compounds characterized by the presence of an amine group (-NH₂) attached to an aromatic ring, such as benzene. Their sources can be various industrial applications, including the synthesis of dyes, pharmaceuticals, cigarette smoke, grilling meat, detergents and many more. They are known to be associated with mutagenicity.

4-aminobenzoic acid Due to their nature, some of them are not completely removed by wastewater (WW) treatment. In addition, hydrophobic AA are expected to sorb onto activated sludge in the WW. Presence of AA in effluent WW and land application of AAcontaining sludge as a soil fertilizer may cause a potential risk for the environment and the human health.

Stir Bar Sorptive Extraction

Stir bar sorptive extraction (SBSE), is a sample preparation technique in analytical chemistry utilized to extract and concentrate analytes from liquid samples for example wastewater or solids suspected in water. Stir bar is coated with a sorbent material, typically Poly-dimethylSiloxane (PDMS) or silicon modified with EthyleneGlycol (EG). Stir bar is typically agitated in sample and then desorbed either thermally or by solvent to release the analytes for analysis. SBSE offers notable benefits, including high sensitivity and selectivity, compatibility with various analytical instruments equipped with thermal desorption units (TDUs), such as gas chromatography-mass spectrometry (GC-MS), and the ability to concentrate analytes from complex matrices, making it invaluable for environmental monitoring.

analysis. We tested the **hypothesis** that isolation of AAs from the sludge matrix can be achieved by a combination of selective derivatization followed by enrichment of the derivatives by SBSE.

Derivatization Aromatic **Effect of logP on theoretical recovery** amines nativly study, derivatization was used to In this With derivatization it is possible to increase hydrophobicity Dianilinomethane the hydrophobicity of aromatic enhance and with that increase theoretical efficiency Aromatic (DADPM) amines for effective extraction via SBSE. By amines modifying the molecular structure of after derivatization compounds the logP value were increased, 99.77 100 successful extraction their improving efficiency and enabling analysis. R-NH 80 $R - NH_2$ CH₃ H_3C^2 We tested two derivatization approaches with – Native different derivatization The agents. Acetic anhydride --- Acetamide Acetamide ––– Benzamide derivatization was performed in basic environment (by addition of Na_2CO_3) using acetic anhydride and benzoyl chloride as derivatization agents, resulting in derivative $R-NH_2$ 20 acetamides and benzamides, respectively. Benzoyl chloride 1.6 2.5 5.4 Benzamide 2 Sample Volume 15 ml Procedure SBSE phase volume 26 ul

Addition of 15 ml MQ Water Addition of (20 ul) A	Aromatic ami	nes Addit (1.0 ml fo 0.5 ml fo	tion of Na ₂ CO or acetic anhydr r benzoyl chlori	3 Addition of the second secon	of derivatizati of acetic anhy 5% benzoyl chl	on agent dride; oride)	Place the sti	he stir bar and r for 2+ hours	or LC Transfer mini vi (let over	er stir bar into al with solvent night to desorb	Remove stir k	oar LC-QTOF Instrumen	tal analysis Evaluation of data
Analysis was done by qui identification in all cases possil A) for each derivatisation metho a) without derivatisation Native	B) for each coating of SBSE C) for each instrumental a) PDMS a) GC MS/MS b) EG b) LC QTOF						Position stir bar into TDU Tube GC-MS/MS Instrumental analysis						
b) with acetic anhydride Acetar	GC-MS/MS						LC-QTOF						
c) with benzoyl chloride Benzamide		PDMS			EG			PDMS				EG	In conclusion, this study highlights
Compound	logP	Native (without der. ag.)	Acetamide (acetic anhydride)	Benzamide (benzoyl chloride)	Native (without der. ag.)	Acetamide (acetic anhydride	Benzamide) (benzoyl chloride)	Native (without der. ag.)	Acetamide (acetic anhydride)	Benzamide (benzoyl chloride)	Native (without der. ag.)	AcetamideBenzamide(acetic anhydride)(benzoyl chloride)	several key findings:
2,4-Diaminotoluene	0.1												
4-Methoxyaniline	0.9												\geq soloctivo $\wedge \wedge$ dorivotization in
Benzidine	1.3												Selective AA derivatization in
o-Toluidine	1.3												combination with SBSE and liquid
4,4'-Oxydianiline	1.4												chromatography with high
4,4'-Methylenedianiline	1.6												resolution mass spectrometry
p-Cresidine	1.7												$(1 \bigcirc OTOF)$ we as we as a finite state
5-Nitro- <i>o</i> -toluidine	1.9												(LC-QIOF) presents an efficient
4-Chloroaniline	1.9												tool to identify AA in complex
4-Chloro-o-toluidine	1.9												matrices
3,3'-Dimethoxybiphenyl-4,4'-diamine	2.2												> PDMS coating is more efficient in
4,4'-Thiodianiline	2.2												
2,4,5-Trimethylaniline	2.3												extraction of derivatives than EG
Naphthalen-2-amine	2.3												silicone
3,3'-Dimethylbiphenyl-4,4'-diamine	2.3												A derivatization with acetamide
4,4'-Methylenebis(2-methylaniline)	2.6												anabled isolation of 11 of 22
Biphenylamine	2.9												enabled isolation of 11 of 23
4-Aminobiphenyl	2.9												primary AAs
3-Chloro-2-methylaniline	3.0												benzoyl chloride was effective in
Aniline Yellow	3.4												isolation of 22 of 23 investigated
3,3'-Dichlorobenzidine	3.5												
o-Aminoazotoluene	3.7												primary AAS
4,4'-Methylenebis(2-chloroaniline)	3.8							. –					
SUM (23)	-	4	8	9	2	0	3	15	11	22	14	U 6	

ruture plans

- Develop quantitative method for analysis AA with SBSE and derivatization
- Do screening of real samples from WWTP Modřice (Brno)

Acknowledgement

Legend Detected Not detected

Authors thanks for financial support by the Czech Science Foundation (GF22-06020K), the Deutsche Forschungsgemeinschaft (DFG, MU 4728/2-1), and the European Union's Horizon 2020 research and innovation program (grant agreement no. 857560). We also acknowledge the support of Research Infrastructure RECETOX RI (No. LM2018121) and Operational Programme Research, Development and Education (No. CZ.02.1.01/0.0/0.0/17_043/0009632).