

MULTI-OMIC INTEGRATION OF FOUR DATASETS: INSIGHTS INTO BARRETT'S ESOPHAGUS AND ESOPHAGEAL CARCINOMA

Jan Böhm, Petra Bořilová Linhartová et al.

both

APPROACHES & RESULTS (single-omic)

RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic

BACKGROUND

Due to long-term gastric acid reflux, Barrett's **esophagus** manifests as а metaplastic change in the esophageal lining, intestinal-like transitioning towards epithelium.

BE EACadj EAC **BEad**

In this study, samples were obtained from 12 We have obtained samples from 12 patients

Barrett's

with

AIMS

Comprehensive Analysis Aim: To integrate multiple omic datasets, including Whole Exome Sequencing (WES), transcriptomics, metatranscriptomics and metagenomics (16S rRNA sequencing) to achieve a more comprehensive understanding of the differences between BE/EAC pathological tissues and adjacent esophageal tissues.

Discriminative Power Aim: To compare the discriminative power of features from different omic datasets.

DATA PROCESSING

WHOLE EXOME SEQUENCING (WES):

©Retained only somatic mutations that are rare in the European population, have pathogenic potential, and possess a minimum of 100 supporting reads.

Data aggregated by genes and expressed as a ratio of reads in pathological tissue (somatic) compared to leucocytes (germline).

TRANSCRIPTOMICS & METATRANSCRIPTOMICS:

Transformed data to counts per million (CPM); inclusion criterion set at a minimum of 10 CPM for

genes. �Log₂ transformation followed by quantile normalization. ØMetatranscriptomic data aggregated at the pathway level.

esophagus, comprising both pathological

tissue (denoted BE) and adjacent tissue

with

diagnosed

without pathology (**BEadj**).

pathological tissue (EAC) and adjacent

carcinoma,

Barrett's esophagus is often progressing to **esophageal adenocarcinoma**, a malignant cancer of the esophagus.

Biomarker Identification Aim: To identify

specific features, either alone or in combination,

that can serve as effective biomarkers for differentiating between BE and EAC.

METAGENOMICS (16S rRNA SEQUENCING):

Aggregated at the genus taxonomic level. Removed MOCK reads; all samples met the 5000 reads minimum inclusion criterion. Applied Total Sum Scaling (TSS) and Central Log-Ratio (CLR) transformations.

WES

patients

Whole Exome Sequencing (WES) focuses on Transcriptomic data encompass sequencing the protein-coding regions of complete set of RNA transcripts produced into the RNA transcripts from esophageal the genome, offering insights into genetic by the genome, providing a comprehensive microbiota, highlighting their active variants that could influence traits or disease susceptibility.

We identified two hallmark pathways, the P53 pathway and epithelial-mesenchymal transition, that exhibit a higher mutational burden in EAC samples compared to BE.

tissue without pathology (EACadj).

esophageal

snapshot of gene expression levels in a cell or tissue at a specific time.

Distinct expression patterns gene differentiate between groups; for instance, CDX2 effectively distinguishes between pathological and adjacent tissue, while MUC2 discriminates between BE and EAC (Wilcoxon test).

METATRANSCRIPTOMICS

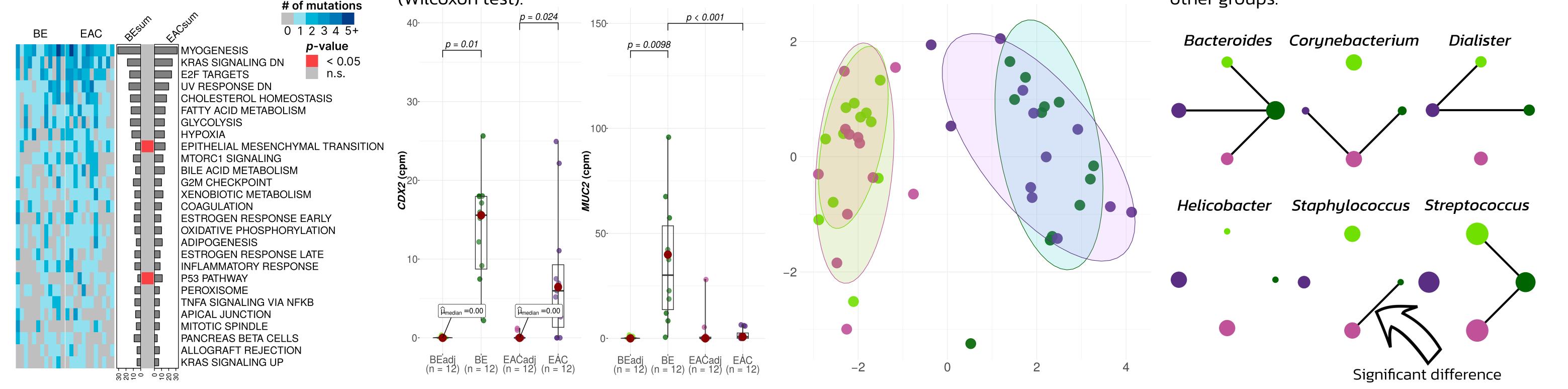
the Metatranscriptomic data provide insights metabolic functions and interactions within the host environment.

> Multidimensional scaling revealed that metatranscriptomic data can distinguish between pathological adjacent and esophageal tissue, yet they do not differentiate between BE and EAC.

METAGENOMICS

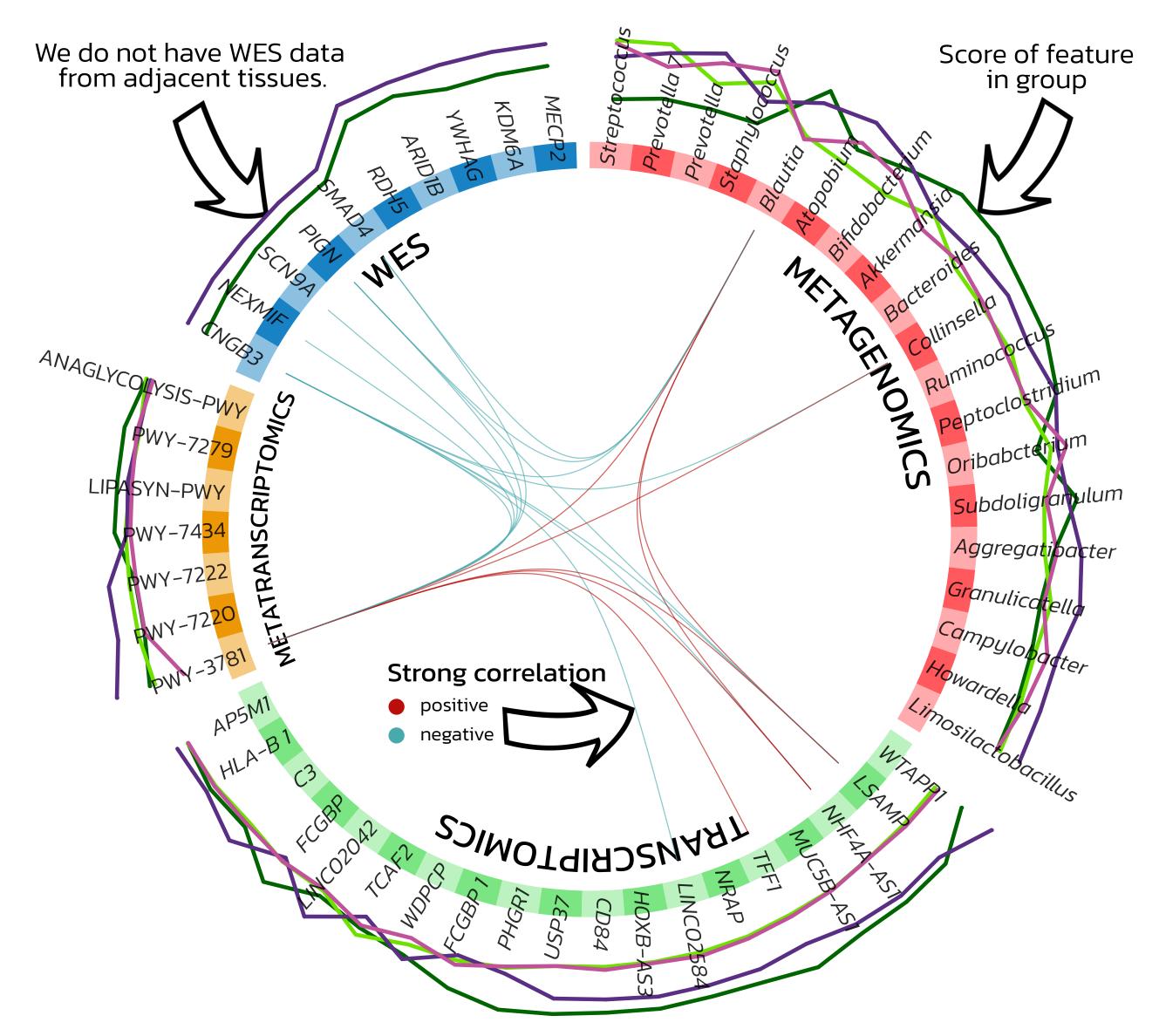
Metagenomics data reveal the relative abundances of bacterial genera within samples.

Figure below: Discs represent the mean relative abundance of specific bacterial genera in each group. Groups connected by ā line show a significant difference (p < 0.05, *t*-test) in their relative abundances. For example, *Bacteroides* are significantly more abundant in BE samples compared to other groups.



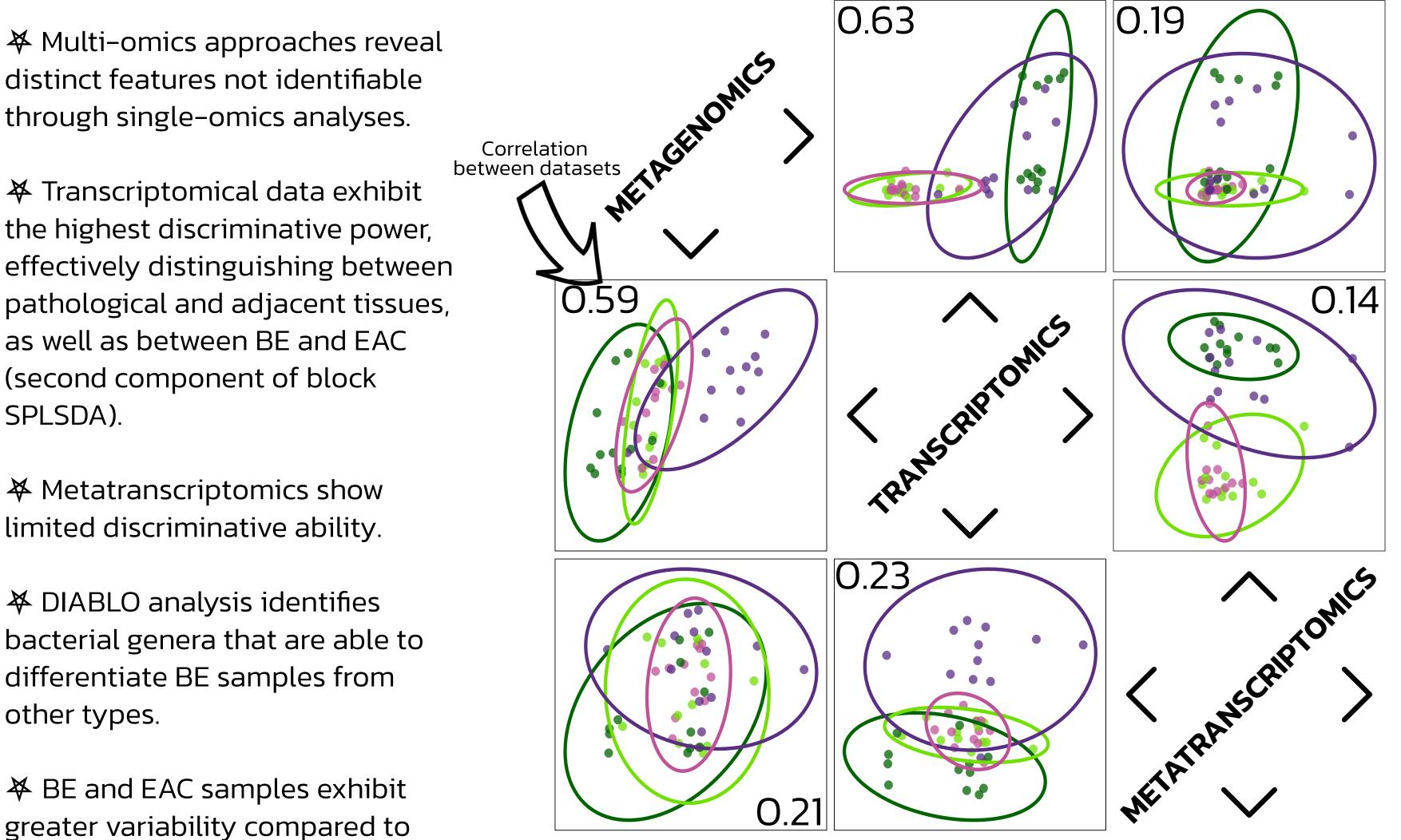
RESULTS (multi-omics DIABLO[♣] framework)

TOP FEATURES (CIRCOS PLOT)



BLOCK SPLSDA

upper triangle: 1st component; lower triangle: 2nd component



*Not the game nor black magic, but **D**ata Integration analysis for **B**iomarker discovery using Latent variable approaches for **O**mics studies developed by MixOmics: Rohart F, Gautier B, Singh A, and Le Cao K-A (2017) mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS computational biology 13(11):e1005752 as well as between BE and EAC (second component of block SPLSDA).

★ Metatranscriptomics show limited discriminative ability.

 \bigstar DIABLO analysis identifies bacterial genera that are able to differentiate BE samples from other types.

✤ BE and EAC samples exhibit greater variability compared to adjacent tissue samples.

The work was supported from Programme JAC – project SALVAGE (CZ.02.01.01/00/22_008/0004644) financed by the Ministry of Education, Youth and Sports – Co-funded by the European Union.

Supported by Ministry of Health of the Czech Republic, grant nr. NU20-03-00126. All rights reserved.

This work was carried out with the support of RECETOX Research Infrastructure (ID LM2023069).

Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech Republic.